Midterm 2 study guide
2.6 - Linear Transformations

- Definition: $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$ and

$$
T(a \vec{x})=a T(\vec{x})
$$

- Same as matrix transformation.
- How to get matrix from T?
- Show that something is not a linear transformation.
- If T is a linear transf. and you know what it does to some vectors, what does it do to another?
- Rotation, projection, Reflection: don't memorize formulas, but understand how they behave
3.1 - Cofactor expansion
- How to find $\operatorname{det}(A)$ by expansion along a row or column
- How wow/column operations affect $\operatorname{det}(A)$.
- Properties of $\operatorname{det}(A)$: zee row/ col, 1 row multiple of another, etc.
- Upper/lower triangular matrices: determinant?
3.2 - Determinants and inverses
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- A invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$.
- If A invertible, $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}$
- orthogonal matrix definition
$-\operatorname{adj}(A)$ definition
- adjugate formula for inverse
- Cramer's Rule
3.3 - Diagonalization + eigenvalues
- eigenvalues / eigenvector definitions
- characteristic poly / how to compute eigenvalues
- How to find eigenvectors (lin. comb. of basic eigenvectors)
- A-invariance + connection to eigenvectors
- computations w/ diagonal matrices: $D^{k}, D_{1} D_{2}$, etc.
- diagonalizable def: $P^{-1} A P$ is diagonal for some P. diagonalizing
matrix
$n \times n$
- When is A diagonalizable?
* if it has n distinct eigenvalues,
* or if total \# of basic eigenvectors is n.
- If A diagonalizable, how to find P, and what is $P^{-1} A P$?
4.1 - Vectors and lines
- length of a vector $\|\vec{v}\|$ and its properties
- parallelogram law for $\vec{V}+\vec{w}$.
- \vec{V} and \vec{w} parallel $\Longleftrightarrow \vec{V}=a \vec{w}$, some $a \neq 0$.
- Vector equation of a line
- parametric eg of a line (break up into coordinates)
- How to find if two lines intersect? Parallel?
- Find eq of line through two given points

